Signal Classification Implemented by Wavelet Analysis and Support Vector Machine
نویسندگان
چکیده
In this thesis, a method for signal classification has been developed and implemented on the platform of Matlab and Libsvm, which combines the techniques of wavelet analysis and support vector machine. The whole process is divided into three stages i.e. Signal Generation, Feature Extraction and Classification. There are 6 types of modulated signals i.e. BPSK, QPSK, FSK, ASK, 4ASK and QAM generated and decomposed by Biorthogonal wavelet to obtain the detail components from each signal. The energy level of each detail components are calculated and forms a feature vector representing the identification of the signal itself prepared to be classified in the vector space of SVM classifier. The classification results shows that the performance of classification works well if the signal to noise ratio (SNR) above 13dB in the range from 1dB to 30dB, which indicates it is feasible working under a certain noise level to classify those defined 6 types of modulated signals. Furthermore, we analyze the reasons that cause the different performance of the signals on the classification test and also discuss the limitation and the possible development of the method in the end.
منابع مشابه
A COMPARATIVE ANALYSIS OF WAVELET-BASED FEMG SIGNAL DENOISING WITH THRESHOLD FUNCTIONS AND FACIAL EXPRESSION CLASSIFICATION USING SVM AND LSSVM
This work presents a technique for the analysis of Facial Electromyogram signal activities to classify five different facial expressions for Computer-Muscle Interfacing applications. Facial Electromyogram (FEMG) is a technique for recording the asynchronous activation of neuronal inside the face muscles with non-invasive electrodes. FEMG pattern recognition is a difficult task for the researche...
متن کاملHeart Rate Variability Classification using Support Vector Machine and Genetic Algorithm
Background: Electrocardiogram (ECG) is defined as an electrical signal, which represents cardiac activity. Heart rate variability (HRV) as the variation of interval between two consecutive heartbeats represents the balance between the sympathetic and parasympathetic branches of the autonomic nervous system.Objective: In this study, we aimed to evaluate the efficiency of discrete wavelet transfo...
متن کاملFault Detection and Classification in Double-Circuit Transmission Line in Presence of TCSC Using Hybrid Intelligent Method
In this paper, an effective method for fault detection and classification in a double-circuit transmission line compensated with TCSC is proposed. The mutual coupling of parallel transmission lines and presence of TCSC affect the frequency content of the input signal of a distance relay and hence fault detection and fault classification face some challenges. One of the most effective methods fo...
متن کاملA Wavelet Support Vector Machine Combination Model for Daily Suspended Sediment Forecasting
Abstract In this study, wavelet support vector machine (WSWM) model is proposed for daily suspended sediment (SS) prediction. The WSVM model is achieved by combination of two methods; discrete wavelet analysis and support vector machine (SVM). The developed model was compared with single SVM. Daily discharge (Q) and SS data from Yadkin River at Yadkin College, NC station in the USA were used. I...
متن کاملPredicting cardiac arrhythmia on ECG signal using an ensemble of optimal multicore support vector machines
The use of artificial intelligence in the process of diagnosing heart disease has been considered by researchers for many years. In this paper, an efficient method for selecting appropriate features extracted from electrocardiogram (ECG) signals, based on a genetic algorithm for use in an ensemble multi-kernel support vector machine classifiers, each of which is based on an optimized genetic al...
متن کامل